Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization.

نویسنده

  • David H Mathews
چکیده

A partition function calculation for RNA secondary structure is presented that uses a current set of nearest neighbor parameters for conformational free energy at 37 degrees C, including coaxial stacking. For a diverse database of RNA sequences, base pairs in the predicted minimum free energy structure that are predicted by the partition function to have high base pairing probability have a significantly higher positive predictive value for known base pairs. For example, the average positive predictive value, 65.8%, is increased to 91.0% when only base pairs with probability of 0.99 or above are considered. The quality of base pair predictions can also be increased by the addition of experimentally determined constraints, including enzymatic cleavage, flavin mono-nucleotide cleavage, and chemical modification. Predicted secondary structures can be color annotated to demonstrate pairs with high probability that are therefore well determined as compared to base pairs with lower probability of pairing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved RNA secondary structure prediction by maximizing expected pair accuracy.

Free energy minimization has been the most popular method for RNA secondary structure prediction for decades. It is based on a set of empirical free energy change parameters derived from experiments using a nearest-neighbor model. In this study, a program, MaxExpect, that predicts RNA secondary structure by maximizing the expected base-pair accuracy, is reported. This approach was first pioneer...

متن کامل

Computational Approaches for determination of Most Probable RNA Secondary Structure Using Different Thermodynamics Parameters

Many bioinformatics studies require the analysis of RNA structures. More specifically, extensive work is done to elaborate efficient algorithms able to predict the 2-D folding structures of RNA. The core of RNA structure is a dynamic programming algorithm to predict RNA secondary structures from sequence based on the principle of minimizing free energy. In this paper the thermodynamic data have...

متن کامل

Computing the Partition Function and Sampling for Saturated Secondary Structures of RNA, with Respect to the Turner Energy Model

An RNA secondary structure is saturated if no base pairs can be added without violating the definition of secondary structure. Here we describe a new algorithm, RNAsat, which for a given RNA sequence a, an integral temperature 0 <or= T <or= 100 in degrees Celsius, and for all integers k, computes the Boltzmann partition function Z(k)(T)(a) = SigmaSepsilonSAT(k)(a) exp(-E(S)/RT), where the sum i...

متن کامل

Topology and prediction of RNA pseudoknots

MOTIVATION Several dynamic programming algorithms for predicting RNA structures with pseudoknots have been proposed that differ dramatically from one another in the classes of structures considered. RESULTS Here, we use the natural topological classification of RNA structures in terms of irreducible components that are embeddable in the surfaces of fixed genus. We add to the conventional seco...

متن کامل

Relation Between RNA Sequences, Structures, and Shapes via Variation Networks

Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • RNA

دوره 10 8  شماره 

صفحات  -

تاریخ انتشار 2004